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Uncertainty Estimation: Overview 



● Quantitative information applied to inversion 
independent of measured data  

 
● Explicit:  

 Parameter bounds (bounded  
    uniform distribution) 
 Non-uniform prior distributions 

 Inter-parameter relationships  

● Implicit: 
 Physics models and  
    parameterizations considered 
     

1.  Prior Information 

Hamilton data 



● Prior information (particularly parameterization, 
hard bounds) can strongly influence solution  
 Important to specify priors in comparing uncertainty 

results 
 
● Common goal:  

 Constrain parameters to physically-reasonable values 

 Allow data information to primarily determine solution  

● If data and prior disagree: 
 Reassess data and error estimates 
 Reassess prior, including physics model and 

parameterization 
     

Prior Information 



 
● Physics model 

 Fluid, elastic or poro-elastic? 
 Range independent/dependent? 
 Plane wave or spherical wave? 

 

● Model parameterization 
 Number of                                                           

layers/segments? 

2.  Model Selection 

n layers—best  choice of n? 



 
● Quantitative uncertainty estimation requires 

appropriate model parameterization 

 Under-parameterization can lead to under-fitting  
    data, biased parameter estimates, under-estimated  
    uncertainties 

 Over-parameterization can lead to over-fitting data,  

    unconstrained structure, over-estimated uncertainties 
 

● Seek simplest parameterization consistent           
with resolving power of the data 

Model Selection 



 
● Qualitative Model Selection:   

 Based on insight and experience 
 

● Quantitative Model Selection:   
 Bayesian information criterion (BIC)—point  

estimate based on optimization that balances                    
data fit and number of parameters   

 Evidence—Integral estimate of parameterization 
likelihood given the data, based on sampling 
 

 Trans-dimensional inversion   
 

 Multiple-model particle filter   
  

Model Selection 

Include number of  
parameters as unknown 
in inversion 



Example: BIC 

● Invert Scholte (interface) wave dispersion                
curves from ambient noise 
 Invert fundamental mode only   
 Invert first 3 modes 

 
 

 

Frequency (Hz) 



BIC: 1 & 3 Mode Inversions  

1 mode: 5 layers resolved 3 modes: 8 layers resolved 



MAP Profiles  



Marginal Probability Profiles 

1 mode 3 modes 



Trans-D Reflection Inversion   



 
● Misfit quantifies difference between measured 

and modeled data  

● Parameter estimation (optimization): 
 Minimize any reasonable misfit function; result is  
    corresponding best-fit model according  
 Likelihood-based misfit provides efficient estimator 

 
● Uncertainty estimation: 

 Generally requires likelihood-based misfit 
 Maxent methods can specify least-informative 
    misfit function for a given constraint  

3. Data Misfit Function 



Likelihood Function 
 
● Likelihood:  Interprets data uncertainty  
    distribution as a function of model parameters 

 Consistent with inversion as mapping data uncertainty 
distribution (data space) to parameter uncertainty    
distribution (model space)   
 

● Requires estimating data uncertainties 
(measurement and theory errors) 
 Form of distribution (Gaussian, Laplace, …)   
 Statistical properties (variance, covariance) estimated   

from data residuals or included as unknowns in inversion  
 



Examples 
 

● IID Gaussian data errors 

 

 

● IID Gaussian errors, unknown source strength 
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● Specifying likelihood requires quantifying the data 

error distribution 
 

● Data errors = Inability to model measured data: 
 Measurement errors: ambient noise, instrumental 

uncertainties, etc.   
 Theory errors: due to idealized physics and 
    simplified parameterization, etc. 
 

● Ensure modeling is as accurate as possible and 
data sample over error processes (difficult) 
 Sample over noise, internal waves, variability, etc. 
 Collect multiple data sets (same & different types)  
 Note: beyond a point, denser data lead to correlated errors 
  

Data Errors 



4.  Parameter Estimation  

● Minimize data misfit                                                            
via optimization  
 Linearized inversion  
    (prone to local minima) 
 Global search 
 Hybrid optimization 

 Repeat optimization 
    to ensure stable result 

 
 Mean model via                                                       

sampling 



5.  Uncertainty Estimation  

● Linearization—Analytic result  
    (exact solution to approximate problem) 

 Gaussian data uncertainties and unbounded-uniform or 
Gaussian prior leads to Gaussian parameter uncertainties 

 Efficient, potentially inaccurate  

● Nonlinear—Numerical sampling  
    (approx solution to exact problem) 

 Monte Carlo/Importance sampling 
 Markov-chain Monte Carlo                                                 

(Metropolis Hastings, Gibbs sampling) 
 Parallel-tempering 
 Numerically intensive; sampling/convergence issues 



Joint Uncertainties—Reverb 
nonlinear                        linearized 



Joint Uncertainties—Reflection 
nonlinear                        linearized 



Uncertainties—Reverb/Scattering  



 
● Uncertainty 

estimation for 
simulations 
quantifies ideal 
sensitivity and 
can help plan 
experiment 
factors 

 

Experiment Planning: Simulation 

Example: Frequencies in MFI 



 Variability   
 Measure of inherent spatial or temporal heterogeneity 

in an environmental property  
 Ideally quantified statistically/probabilistically  
 Intrinsic property of the environment—cannot be 

reduced by improved experiment or data analysis, 
although these can improve variability estimates   
 

● Uncertainty 
 Measure of knowledge of an environmental parameter 

 
 Ideally quantified statistically/probabilistically  
 Property of environmental knowledge, not of the 

environment itself—can be reduced by improved 
experiments or data analysis 

6.  Variability & Uncertainty 



 Inversion uncertainties quantify accuracy of the 
model parameter estimates adopted to 
represent the environment    

● Consider a parameter (e.g., sound speed of 
upper layer) over an experimental footprint  
 Uncertainty quantifies accuracy of average sound 

speed over footprint  
 Uncertainty does not quantify sound-speed variability 

over footprint (accurate average could be obtained for 
a highly variable property)  

 Parameter estimates involve non-uniform averaging   
so care required in interpretation  

Variability & Uncertainty 



   
● Variability & Uncertainty are distinct but related   

 Variability can cause theory/modeling errors which 
lead to parameter uncertainties  

 If theory errors due to variability dominate and are 
adequately sampled, uncertainty estimates can 
quantify variability (care required)   
  

Variability & Uncertainty 



   
● Variability study:     

 Localized, high-resolution measurements closely 
spaced in space or time   

 Significant differences between recovered parameters 
represent variability  

 Uncertainty estimation essential to determine if 
observed differences due to environmental      
variability or uncertain parameter estimates   
  

Variability & Uncertainty 



Sequential Trans-D Inversion  

 AUV-towed source and array: 
 Reflection data for small seafloor footprint 
 Mobile system for sub-bottom mapping 
 Reduces effects of seabed/ocean variability  



Sequential Trans-D Inversion  



 
● Joint (simultaneous) inversion of different data 

brings more information to bear  
 

● Different physics for different data can overcome  
 Low sensitivity to some parameters  

 Inter-parameter correlations 
  

  

7. Joint Inversion 



● Invert (separately and jointly): 
● Short-range propagation data 
● Reverb data 

 
 

Example: Reverb/Prop Inversion 
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Reverb Inversion—Joint Marginals 
 
 

● Strong inter- 
parameter 
correlations 
from reverb 
physics 



 
 

 

Propagation—Joint Marginals 
 
 

● Different 
parameter 
correlations 
arise from 
different 
physics 



 
 

 

Reverb + Propagation Inversion 
 
 

● Geoacoustics 
& scattering 
well resolved  



Inversion Comparison 
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