Uncertainty Estimation: Overview

- **1.** Prior information
- 2. Model selection
- 3. Data misfit
- 4. Parameter estimation
- **5.** Uncertainty estimation
- 6. Uncertainty/variability
- 7. Joint Inversion

1. Prior Information

• Quantitative information applied to inversion independent of measured data

• Explicit:

- Parameter bounds (bounded uniform distribution)
- Non-uniform prior distributions
- Inter-parameter relationships

• Implicit:

 Physics models and parameterizations considered

Prior Information

- Prior information (particularly parameterization, hard bounds) can strongly influence solution
 - Important to specify priors in comparing uncertainty results
- Common goal:
 - Constrain parameters to physically-reasonable values
 - Allow data information to primarily determine solution
- If data and prior disagree:
 - Reassess data and error estimates
 - Reassess prior, including physics model and parameterization

2. Model Selection

• Physics model

- > Fluid, elastic or poro-elastic?
- Range independent/dependent?
- > Plane wave or spherical wave?

Model parameterization

Number of layers/segments?

n layers—best choice of n?

Model Selection

- Quantitative uncertainty estimation requires appropriate model parameterization
 - Under-parameterization can lead to under-fitting data, biased parameter estimates, under-estimated uncertainties
 - > Over-parameterization can lead to over-fitting data, unconstrained structure, over-estimated uncertainties
- Seek simplest parameterization consistent with resolving power of the data

Model Selection

- Qualitative Model Selection:
 - Based on insight and experience
- Quantitative Model Selection:
 - Bayesian information criterion (BIC)—point estimate based on optimization that balances data fit and number of parameters
 - Evidence—Integral estimate of parameterization likelihood given the data, based on sampling
 - > Trans-dimensional inversion
 - > Multiple-model particle filter
- Include number of parameters as unknown in inversion

- Invert Scholte (interface) wave dispersion curves from ambient noise
 - Invert fundamental mode only
 - Invert first 3 modes

BIC: 1 & 3 Mode Inversions

1 mode: 5 layers resolved

3 modes: 8 layers resolved

MAP Profiles

Marginal Probability Profiles

Trans-D Reflection Inversion

3. Data Misfit Function

- Misfit quantifies difference between measured and modeled data
- Parameter estimation (optimization):
 - Minimize any reasonable misfit function; result is corresponding best-fit model according
 - Likelihood-based misfit provides *efficient* estimator
- Uncertainty estimation:
 - Generally requires likelihood-based misfit
 - Maxent methods can specify least-informative misfit function for a given constraint

Likelihood Function

- Likelihood: Interprets data uncertainty distribution as a function of model parameters
 - Consistent with inversion as mapping data uncertainty distribution (data space) to parameter uncertainty distribution (model space)
- Requires estimating data uncertainties (measurement and theory errors)
 - Form of distribution (Gaussian, Laplace, ...)
 - Statistical properties (variance, covariance) estimated from data residuals or included as unknowns in inversion

Examples

IID Gaussian data errors

$$P(\mathbf{d}, \mathbf{m}) = \frac{1}{\left(2\pi\sigma^2\right)^{N/2}} \exp\left[-\left|\frac{\mathbf{d} - \mathbf{d}(\mathbf{m})\right|^2 / 2\sigma^2}\right]$$

misfit $E(\mathbf{m})$
(least squares)

• IID Gaussian errors, unknown source strength

$$E(\mathbf{m}) = \left[\left| \mathbf{d} \right|^2 - \frac{\left| \mathbf{d}^T \mathbf{d}(\mathbf{m}) \right|^2}{\left| \mathbf{d}(\mathbf{m}) \right|^2} \right] / \sigma^2$$

(Bartlett processor)

Data Errors

- Specifying likelihood requires quantifying the data error distribution
- Data errors = Inability to model measured data:
 - Measurement errors: ambient noise, instrumental uncertainties, etc.
 - Theory errors: due to idealized physics and simplified parameterization, etc.
- Ensure modeling is as accurate as possible and data sample over error processes (difficult)
 - Sample over noise, internal waves, variability, etc.
 - Collect multiple data sets (same & different types)
 - Note: beyond a point, denser data lead to correlated errors

4. Parameter Estimation

- Minimize data misfit via optimization
 - Linearized inversion (prone to local minima)
 - Global search
 - Hybrid optimization
- Repeat optimization
 to ensure stable result
- Mean model via sampling

5. Uncertainty Estimation

• Linearization—Analytic result

(exact solution to approximate problem)

- Gaussian data uncertainties and unbounded-uniform or Gaussian prior leads to Gaussian parameter uncertainties
- Efficient, potentially inaccurate
- Nonlinear—Numerical sampling (approx solution to exact problem)
 - Monte Carlo/Importance sampling
 - Markov-chain Monte Carlo (Metropolis Hastings, Gibbs sampling)
 - Parallel-tempering
 - Numerically intensive; sampling/convergence issues

Joint Uncertainties—Reverb

Joint Uncertainties—Reflection

Uncertainties—Reverb/Scattering

Experiment Planning: Simulation

 Uncertainty estimation for simulations quantifies ideal sensitivity and can help plan experiment factors

6. Variability & Uncertainty

• Variability

- Measure of inherent spatial or temporal heterogeneity in an environmental property
- Ideally quantified statistically/probabilistically
- Intrinsic property of the environment—cannot be reduced by improved experiment or data analysis, although these can improve variability estimates

• Uncertainty

- Measure of knowledge of an environmental parameter
- Ideally quantified statistically/probabilistically
- Property of environmental knowledge, not of the environment itself—can be reduced by improved experiments or data analysis

Variability & Uncertainty

- Inversion uncertainties quantify accuracy of the model parameter estimates adopted to represent the environment
- Consider a parameter (e.g., sound speed of upper layer) over an experimental footprint
 - Uncertainty quantifies accuracy of average sound speed over footprint
 - Uncertainty does not quantify sound-speed variability over footprint (accurate average could be obtained for a highly variable property)
 - Parameter estimates involve non-uniform averaging so care required in interpretation

Variability & Uncertainty

- Variability & Uncertainty are distinct but related
 - Variability can cause theory/modeling errors which lead to parameter uncertainties
 - If theory errors due to variability dominate and are adequately sampled, uncertainty estimates can quantify variability (care required)

Variability & Uncertainty

- Variability study:
 - Localized, high-resolution measurements closely spaced in space or time
 - Significant differences between recovered parameters represent variability
 - Uncertainty estimation essential to determine if observed differences due to environmental variability or uncertain parameter estimates

Sequential Trans-D Inversion

• AUV-towed source and array:

- Reflection data for small seafloor footprint
- Mobile system for sub-bottom mapping
- Reduces effects of seabed/ocean variability

Sequential Trans-D Inversion

7. Joint Inversion

- Joint (simultaneous) inversion of different data brings more information to bear
- Different physics for different data can overcome
 - Low sensitivity to some parameters
 - Inter-parameter correlations

Example: Reverb/Prop Inversion

- Invert (separately and jointly):
 - Short-range propagation data
 - Reverb data

Reverb Inversion—Joint Marginals

 Strong interparameter correlations from reverb physics

Propagation—Joint Marginals

 Different parameter correlations arise from different physics

Reverb + Propagation Inversion

 Geoacoustics & scattering well resolved

Inversion Comparison

