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e Recent interest in studying the effect of shear on compressional
wave attenuation, especially the frequency dependence.

e Recent results showing the effect of shear on modal travel times

e Some studies focusing on the removal of energy from the field due to
shear wave conversion by Carey et al., J. Acoust. Soc. Am. (2008).

e Pierce and Carey (POMA 8 005001 (2010)) showed that geoacoustic
inversions tend to deduce
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Attenuation associated with shear is directly proportional to
and cube of the shear speed

Shear is also important in geotech. applications (slope stability, foundations for deepwater structures etc.)
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The particles in a Rayleigh wave oscillate in an elliptical path within the vertical plane
containing the direction of wave propagation. Within the elliptical path, particles travel
opposite to the direction of wave propagation at the top of the path and in the direction of
propagation at the bottom of the path.
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Scholte Waves

Decay exponentially in amplitude away frorﬁrom Osler and Chapman, Canadian Acoustics, 24(3), 1996

CFAV Quest

the boundary in either medium( i.e., the
wave is evanescent in both media).

The propagation speed and attenuation
closely related to shear-wave speed and
attenuation over a depth of 1-2 wavelengths

in tO the seabed, but are relatively
insensitive to the compressional-wave
properties.

Dispersion characteristics of the Scholte
wave provide information about the
sediment shear-speed gradient, and a shear-
speed model can be constructed by matching
the observed dispersion properties.

Interrogation
Transducer

Y

Charge
RO N>

‘__-L_z_z_Suia:e Float

N/

. Interface
Clay and Silt
I

Dosso and Brooke, J. Acoustic. Soc. A., 98(3), 1995
Rauch, Seismic interface waves in coastal waters: A
review, SACLANT Report, 1980

Figure 5:  Source to receiver arrival paths and schematic of experimental setup.
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Soft sediment Hard sediment .
EVENT "A" EVENT "B” Soft sediments

‘ -  10s to few 100s of m/s

» Strong dispersion (many modes)
due to sedimentary layering
. = —=.". = e« Higher attenuation

_ - Hard sediments
- * 1200s to 1500s of m/s

N = « Dispersion less pronounced
e Low attenuation

Group velocity (m/s)
radial component (m/s) wvertical component (m/s)

- i : : | Air Rayleigh Wave Vertical Particle Motion
Layer 1 ~IR1
Frequency ) ]I
Dispersion of interface waves generated in a 'soft

bottom'(Event A) and 'hard bottom' (Event B).
[Figure from Rauch, 1985]
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Shear measurement system
consisting of a
geophone/hydrophone array
and data collection system
(SHRU)

Sled with SHRUs weight
/ Geophone/Hydrophone

Cable ta
-Geophone Array

~ gimballed geophones "
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John Ewing, Jerry A. Carter, George H. Sutton, and Noel Barstow, Shallow water sediment A. Caiti. T. Akal. and R.D. Stoll, Estimation of shear wave Velocity in shallow

ies derived from high-f h inter I of Geophysical : / . ear W
Bt 5 (1602 e e o doeard 2" and interface waves, Joural of Geophysica marine sediments, IEEE Journal of Oceanic Engineering 19 (1994), 58{72.




THE

oot System Components

Vertical Geophones (gimbaled) and Hydrophone

Several Hydrophone Receive Units
(SHRUs) : 3 Units (12 Channels)

Geospace Sea Array |
3-axis Gimbaled
Geophone (three
mutually

HTI-24-5350) SERIES -

HTI-94-SSQ endicular
Hydrophone pzopehonglsJ aand
(8 total) geophones)

Hydrophone (2 total) =
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Two field
tests

Simple
source
(thumping
the bottom)

Using
Combustive
Sound
Source

Location of shots and geophone array: Day 1
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Sled: Houses two SHRUSs
The geophone array will follow the
sled into the water

Gas generator for the CSS T .‘
3 ‘:/‘- ‘ —l @ C W E— |
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Sled being deployed
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CSS being lowered into water

Gas Delivery System

* bottled gas/electrolytic cell

* mass flow controller Ve
* valves

’_‘

lgnition System
| » capacitor bank
e ——-+ stick coils
- spark plugs

h
/-\al .l

-

Combustion Chamber % \




THE

UNIVERSITY  CSS Signals on geophones A and D

OF RHODE ISLAND

Vertical velocity component

Velocity measured on geophones A and D at 150 m
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) Bibee, “A comparison of seismometer and hydrophone
Surface wave arrival recordings of VLF seismo acoustic signals,” Oceans 1991.

Presence of seafloor roughness or lateral variations in sub-seafloor compressional
and/or shear wave velocity may indirectly excite these propagation modes through
scattering processes.

Hydrophone (co-located with geophone) not available for Day 1 due hardware problems
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Time-frequency scalogram
U Velocity measured on geophones A and D at 150 m
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Table 1.3 Geoacoustic properties of continental shelf and slope environments.

Bottom type P Oe/oe  Cpltw Cp C; ®p ('R
(%) - - (m/s) | (m/s) |(dBfh,) (dB/A,)
Clay 70 15 100 1500 | <100 | 02 1.0
Silt 55 L7 1.05 1575 | Y 1.0 1.5
Sand 45 19 11 1650 | @ 0.8 25
Gravel 35 20 1.2 1800 | &P 0.6 1.5
Moraine 25 2l 1.3 1950 | 600 0.4 1.0
Chalk .22 1.6 2400 | 1000 | 02 0.5
Limestone - 24 2.0 3000 1500 0.1 0.2
Basalt - 27 35 52502500 | o1 0.2
0 = 807 Jensen, Kuperman, Porter and Schmidt,

2 =110

Computational Ocean Acoustics, p. 38, (2000

cf'} = 180 3%

power law (power=1/2) shear speed profile
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Godin and Chapman (2001) developed an
approach to model the interface wave
dispersion assuming a power law shear
speed profile.

Another approach is the Thomson—Haskell
method based on the propagator matrix
solution (sediment layering)

A propagation model like OASIS or elastic PE
could also provide the forward modeling tool.
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3-axis geophone and
Co-located hydrophone

Sled with SHRUs weight
Geophone/Hydrophone

3-axis geophone and co-located hydrophone will be added to the existing system
These will be connected to the third available SHRU (4 channels)

Full system will be tested in Narragansett Bay
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Other interests:

Compressional wave speed and attenuation
estimates based on mode travel time dispersion and
mode amplitude ratios using broadband source
(CSS)

Effect of shear on mode travel times and mode
attenuation
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Group speed dispersion with shear
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Attenuation: Mode 1 and 2

Published data — all types of sediments (Stoll- 85)

Freq. exponent ~ 1.86 (deep)
1.89 (shallow)
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Seafloor Characterization Using
Gliders

Jim Miller
NATO Undersea Research Centre
La Spezia, Italy
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e NURC will be carrying out two sea tests in 2012
with gliders to measure sediment properties:

— NATO exercise Proud Manta 2012 off the coast of
Sicily: NURC will deploy SLOCUM gliders with a single
hydrophone to measure ambient noise for measuring
sediment properties (Feb. 2012)

— NURC experiment GLASS 2012 off the coast of Italy
will deploy a FOLAGA glider with a tetrahedral array
of hydrophones in tow. (July 2012)
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2012

SLOCUM glider fleet at NURC to
be used in NATO exercise
PROUD MANTA in Feb. 2012:
Single towed hydrophone.

FOLAGA hybrid AUV/glider to be
used in NURC GLASS* experiment
in July 2012:

Tetrahedral towed hydrophone
array and active down looking sona

*GLider Acoustics Sensing of Sediments



Project

About us Activities Media Gallery

Italiano English

Home = Underwater applications > Folaga AUV

Folaga AUV

H Underwater applications Low Cost Platform; Surface Mavigation Capability; Pitch/Yaw Contral by

Technical Assistance

= Hydro-jet; Buoyancy change (glider); Transportable by car; Payload

Services - Sea Trials

Modular sy=tem for

manitoring, ispection

Wersatility; High Maneuverability and Hovering; Surface Communications;
Designed for Cluster Work

I

survelliance in
Underwater
environnement
Folaga AUV
Eurcbot wet model

Amadeus Dual Arms
Cell
MNearzshore

Wawve-Current Meter

¥ Robotic system
[# Research projects

o Diameter: 155 mm

o Length from: 2000 mm

o Weight in air: 31 kg

o Energy Storage: NiMh Batteries 12 Vaolt 45 Ah

o Speed: 2 knots (up to 4 knots if required)

o Control: pitch/yvaw thruster, movable ballast, active buoyancy control
o Endurance: 6 hours at max speed

o Maneuverability: any bearing and trim with no active surfaces
o Gliding Scope: 0 - 50 m

o Max depth: 80 m (underwater navigation)

o Software: Windows Command and control interface

http://www.graaltech.it/en/project.php?cid=2&pid=5

Brochure

1l Secolo XIX (1402.5 Kb
Folaga (1622.2 Kb)

Folaga AUV Gallery
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e Geophone array designed for shear and interface
wave investigations in shallow water.

e Successful tests in shallow waters off RI.

e Further work:
— Process the remaining data
— integrate the remaining sensors into the system

— implement better modeling techniques (sediment
layering)
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August Sea Test Participants
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GEOSPALCE

TECHNOLOGIES

Anrn OY0O Geospace Company

MP-8D & MP-2F

Multi-Companent

Geophysical Acquisition Systems
Telemetry Cable & Leader Wire

Connectors

Adaptors

Geophone Cases/Splices/Ts
Accessories

Cperational Depth
Dimensions:
Length:

Diameter:

Weight:

1-250 ft (.30-76 m)
Without Quter Case
4.75in (12.07 cm)
2.00 in (5.08 cm)

.52 |lbs (236 g)

1-350 ft (.30-107 m)
With Quter Case
5.50in (13.97 cm)
2.40 in (6.10 cm)

7 |bs (349 g)

PRODUCTS REQUEST INFO | SUPPORT | CONTACT INFORMATION | NEWS & EVENTS
Geophysical MP 25 S .f. t.
S = pE‘CI 1Cations

Geophones MP-25-250 MP-25-350 MP-25-656

Hydrophones Matural Frequency £ 15 * 10 Hz 10 Hz 10 Hz
MP12
MP24 Vaoltage Sensitivity £ 1.5 dB 11.2 Volts/Bar 8.0 Valts/Bar 6.4 Vaolts/Bar
MP23 Impedance 250 Ohms 250 Ohms 250 Ohms
MP24R .

o

MP25R DC Resistance + 10% 160 Chms 160 Chms 160 Ohms
MF26 Operating Temperature Range 0-35%C 0-35%C 0-359C

1-656 ft (.30-200 m)
Sidewinder
6.60 in (16.76 cm)
2.00 in (5.08 cm)

.58 |bs (263 g)
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2. HT1-94-SSQ SERIES Hydrophone

Sensitivity

with preamp (max) -165 dB re: 1 ViuPa

Frequency Response

2Hz to 30 KHz

Equivalent Input Self Noise

RMS from 1 Hz to 1000 Hz

-T5dBre: 1 uPa
- 0.06 uBar

Spectral
- 54 dB re: 1 uPalsq.root Hz @ 10 Hz

-40 dB re: 1 uPalsq.root Hz @ 100 Hz
- 38 dB re: 1 uPalsq.root Hz @ 1000 Hz

Maximum Operating Depth

20,000 feet (6096 meters)

Size

1.50 inches (3.8 cm) length X 1.25 inches
(3.2 cm) diameter
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 Importance of shear waves for low frequency
acoustic propagation in shallow water
— Frequency dependence of attenuation (Pierce-Carey)
— Modal group velocity (Tolstoy, our work)
— Reflection coefft. (Zhang and Tindle, 1995)
— Geotechnical applications

* Dispersive interface waves as sensing scheme for
shear wave profiles

e Geophone array for measuring interface waves

e Test results to date including using Combustion
Sound Source (CSS) this summer
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Tests conducted for 3 days in Narragansett Bay and shallow waters off Block Island

Tests were conducted in Narragansett
Bay (~ 10 m water depth) on Day 1

Source: Combustive Sound Source (CSS)
in water (close to the bottom)
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East Coast earthquake on August 23, 2011

x10"  Earthquake Signal; Day 2; Geophone A at Nehraska Shoal Scalogram: Earthguake signal; 08 Aug 2011

-
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Velocity amplitude
frequency (Hz)

2805 281 2615 282 2825 283 2035 284 0 05 1 15 2 25 3
time (minutes) time (minutes)

Signals generated by the East Coast earthquake on August 23, 2011 at
approximately 17:52:30 UTC, received at one of the geophones. This
sensor was at (41.35965582, -71.55043477). The x- axis is in minutes since
switching on the data acquisition system (which was at 13:11:52 UTC)
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Phase and Group velocity of interface waves
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Godin and Chapman (2001) developed an approach
to model the interface wave dispersion assuming a
power law shear speed profile.

Another approach is the Thomson—-Haskell method
based on the propagator matrix solution

Waves, in Waves in Fluids and Solids , Edited _ _ _
by Ruben Pico Vila, InTech Publishers, 2011 = A propagation model like OASIS or elastic PE could

also provide the forward modeling tool.



THE Dispersion of interface waves in sediments with
UNIVERSITY P

OF

RHODE 1siaNp  Power-law shear speed profiles (Chapman & Godin,2001)

depth (m)
o ol L L ol
[, = [ X, ] = (%]

=h
=

power law (power=1/Z) shear speed profile

phase and group speed dispersion

& Phase speed
400} .- — Group speed

M
o
o

C, =55m/s

v= 045 i 100+
50 100 Sh ;:Ir] speedz[lr]l?fs] 250 300 350 5 10 15 20
frequency (Hz)
i v Vv el(l—w)
> | Co Nen.v.R)| ™ " — [1—v)| [ 1)
I”_l._. pr : Un - (1_V)\/n B,= Vol T2 J / I ﬂll

R=p,/p ( Ratio of the water density to sediment bulk density

n — mode number V,,— phase velocity U, — group velocity
N+ — effective mode number (a dimensionless number which is a function of n, R, and
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Sled with _

one SHRU 3-axis geophone +

one hydrophone
e
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e Direct measurements (probes-shear wave transducers or cone
penetrometers)

* |Inthe lab using probes

* |n situ measurements are limited in depth, time consuming and
often require support from divers or submersibles.

e Laboratory measurements have consistently shown lower values
than in situ measurements (due to disturbance during
collection, transportation and storage and reduction in confining
pressure.

* Probes typically (especially lab ones) make measurements at
frequencies higher than at which shear conversion is significant.

Analysis of interface waves provide a tool for shear speed estimation

Osler and Chapman, Canadian Acoustics, 24(3), 11-22, 1996



TI-n:

ARL Typical Pressure Signatures
c Kt and Spectra (ARL —UT)

Gas Delivery System
* bottled gas/electrolytic cell

CSS Shots at Various Gas Volumes, Depth = 9 m, Range = 11 m
80 T T T T 578 dB" T T
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* spark plugs
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Energy Spectral Density
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A combustible mixture of hydrogen and oxygen is produced by an electrolytic cell.
The gas is captured in a combustion chamber that is immersed in the water column or
on the seabed.

The gas mixture is ignited by a spark and the ensuing combustion and bubble activity
produce low-frequency, broad band acoustic pulses.



THE
UNIVERSITY - Gepophone: GS-32

Geospace PV-1 Dual Vertical Axis Gimbaled Geophone and Hydrophone
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