PARAMETERS THAT MUST BE MEASURED

Grain shearing model (and also Biot model)
- porosity (as a function of depth)
- density
- grain size (as a function of depth)
--> both can be measured by the core logger and/or directly on the sample
--> must be done just after opening the sample

Bill Siegmann's model. Same as above and:
- pH for the pure mud cores
- constituent components

- also shape/composition/volume of the grains

- visual description of each grain size class

- platelet properties, cation exchange capacity (can this be done? see with geochemist?)

- SEM (Scanning Electron Micrograph)

- gaz/bubbles will be difficult

- organic fraction

- shear strength of the material
NECESSARY FOR EVERY CORES: grain size, density, porosity, permeability (last one is difficult)
-water content and calcium carbonate content will be done routinely (maybe not for all cores thought)
-additional measurements are important as well

==================================

ANALYSIS STRATEGY

How many cores? At least 20 cores with 4 different types
-pure mud
-(nearly) pure sand
-slow mud/sand transition
-rapid mud/sand transition

Analysis strategy will depend on the results of the first cores (is there variability?)

Need to quantify uncertainty/variability of the geological measurements. How does that impact the geoacoustic model?
-we can use the variability as a proxy for the uncertainty
-we can run the same sample more than once
-there may be systematic errors. Can we do something about it? The geologist will transmit as much information as they can.

Depth sampling will depends on depth variability.

======================================

CHOOSING CORES

3 tracks: main acoustic track, secondary acoustic track, SAMS track
-at least 4 cores on each track
-make sure to process several pure mude cores in the center to assess variability
-some extra cores elsewhere for variability

need to be adjusted depending on the acoustic experiment

======================================

TIME SCALE
What is needed when?